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ULTRASONIC WAVE PROPAGATION IN DEFORMED
ISOTROPIC ELASTIC MATERIALS

Y UKIO IWASHIMIZU

Department of Aeronautical Engineering. Kvoto University. Japan

Abstract— Ultrasonic wave propagation in a deformed solid is studied on the basis of the second-order theory of
elasticity. The deformation considered is such a kind as one of principal axes of the siress has the same direction
at any point and the other two rotate. The fundamental differential equations of the second order which govern
ultrasonic wave propagation along the fixed principal direction are reduced to the first order equations by adequate
approximation. Then the effects of non-uniformity of the deformation. especially rotation of principal axes of the
stress. on waves are examined. It is shown for the quasi-transverse wave that principal axes of the stress are no
longer polarizauon directions but there exist new directions called characteristic directions as in three-dimensional
photo-elasticity.

1. INTRODUCTION

ULTRASONIC waves in deformed elastic materials have been studied from two points of
view. One is to determine the third-order elastic constants [1] which are required in solid
state physics and another is to analyze stress distributions [2-5]. In the former case it is
sufficient to study uniform deformations on which ultrasonic waves are superposed, but
in the latter we have to treat inhomogeneous deformations. Tokuoka and Iwashimizu [5]
showed in two-dimensional stress states the stress-acoustical law holds in certain approx-
imation.

In this paper we discuss the effects of rotation of principal axes of the stress along the
wave normal on amplitudes and phases of ultrasonic waves. [t is shown that phases of
waves are influenced by non-uniformity of deformations and transverse waves do not
exhibit such polarization phenomena as in uniform deformations [6. 7] and in undeformed
crystals [7, 8] but have new directions called characteristic directions as in three-dimensional
photo-elasticity [9].

2. BASIC RELATIONS OF THE THEORY OF AN INFINITESIMAL ELASTIC
DEFORMATION SUPERPOSED ON A SMALL ELASTIC DEFORMATION

An elastic material of the Green type is deformed from the natural state to the static
state where the stress tensor of Cauchy is t;;. A superposed infinitesimal wave is described
by w, subject to the equation [5]
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where v, isrectangular Cartesian coordinate in the deformed state. and the usual summation
convention is used. Also
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where ¢, and ¢ are the linear strain and the dilatation in the deformed state, and . Lo
and n are elastic constants defined by the expression of the strain energy T as
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Iz, 1 and 11, being principal invanants of Lagrangian strain.
In {5](2.1)and {2.2) are derived in the case { = m = n = 0,

3. SIMPLIFICATION OF THE FUNDAMENTAL EQUATION (2.1)

At first we assume that the deformation state on which ultrasonic waves are superposed
is such as one of principal directions of the stress coincides with the x,-direction at any
point of the material. that is
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In this deformation state consider a ultrasonic wave propagating along the x,-direction.
Then
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hold because of smallness of the wavelength. Taking into account (3.2) the equations (2.1)
are reduced to
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and p, is the density in the undeformed state and Greek indices o and f take the values 1
and 2. In derivation of (3.3)and (3.4) we used (3.1}and retained only terms containing deriva-
tives with respect to x;.

Because of the right hand members in (3.3) and (3.4) the exact transverse wave (w; = 0)
and the exact longitudinal wave {(w, = w, = 0) cannot propagate. For example even if the
initial and the boundary conditions are satisfied by the transverse wave only, the longitudin-
al wave may be generated through (3.3) and (3.4) and vice versa. However if we treat two
cases {a) incidence of the transverse wave and (b) incidence of the longitudinal wave separ-
ately we can simplify (3.3) and (3.4) and show that the quasi-transverse and the quasi-
longitudinal waves can propagate without each other.

Case (a): Incidence of the transverse wave
In this case w, and w, are primary and the magnitude of the associated w, can be
expected to satisfy

(wil ~ lewwils lewl (3.6)
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bv (3.4 and (3.2). Then the magnitudes of the right hand members of {3.3) are at most
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we can neglect the right hand members of 13.3), and have
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We express the solutions of {3.7) as

w, = W, explileat —k,, x;)] (x = 1,2
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where W, and W, are functions of X, . x, and x,.and k,, = @, ry. » 1. Using(3.8)and (3.7
and taking into account k,, » 1 and the relation expected in advance that W, and their

derivatives are of the same order magnitude. we have
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Furthermore we use the transformation
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to simphfy (3.9) and the results are
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where C = 4gk,, . Equations (3.11yare the final cquations governing the quasi-transvorse

wave i the case ra).
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For later use we transform (3.11) to local principal axes of the stress. The components of
W, and e, (2. f = 1.2) in these axes are denoted by W, and ¢, (x = 1. 2) respectively and
their transformations are

W, = W) cos8—W,sin 6.

(3.12)
W, = Wsin 0+ W5 cos 0.
and
ey = gl +ey)+3le; —ez)cos 20,
ey = jley+ey)—He, —ey)cos 20, (313)

. = He, —e,)sin 20.

]
~
¥

€12

where ¢ is the angle between the principal axis and the x,-axis and is a function of x,. If we
put @ = Oafter using (3.12)and (3.13)to (3.11)and carrying out indicated differentiation, we
obtain the required equations:
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Case (b): Incidence of the quasi-longitudinal wave
In this case wy is primary and the magnitude of the associated w, and w, can also be
expected to satisfy

[wylwal ~ fegws)

by (3.3yand (3.2). Then as in the case (a) (3.4) can be replaced by
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In the same way as in the case (a) we can simplify (3.15) as
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where
P
wy = Wyexp ﬁkoif (r—ejdx;;. (3.17)
Then
W, = Dexp{%kw-‘- ' (r—e)d.\'J}. (3.18)

where D is a constant.
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Therefore the effect of the deformation on the quasi-longitudinal wave is expressed b
the additional phase d:

4. BEHAVIORS OF ¢, —¢, AND d0/dx,

Since we conhne the type of the deformation by the assumption (3.1}, functions in co-
efficients of (3.11) and {3.14} are also restricted. Here we consider behaviors of these func-
tions and use these resuits in examiming (3.11) or (3.14).

By almost the same discussions in {10} the restriction (3.1) gives following general forms
of stress components:
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where x,., v, and O, are functions of x, and x, only, and satisfv
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For our purpose it is suffictent to know how coefficient functions in (3.1 11and (3.141 depend
upon x;. Therefore we have from (4.1}

Cg Ty T Uy U Ny U,V
. {+.3)
Cpa T Oy O Ny RO YT,
dd e ag = Cady 1 20y = G IXy F{Coiy — O 1T
dx, {thy = X+ =N 4+ He, + N e -
] ) L 4
€ =y = Hudy = d Ny~ daN3)7 = e, +0,0 =03
where «'s and ¢'s are functions of v, and v, onlv.
Let us define the quanuty » by
Cle, —eq .
VR Tt 4.5
de
v,
Then by (4.4}
i 1
o= {+.6)




Ultrasonic wave propagation mn deformed 1sotropic elastic matenals 425
We can show that the case {x] » | and the case ¢, —¢. and df/dx,. therefore x are nearly
constant for certain interval of x; are possible but the case |x| « | is impossible. As an

example we show 1n Fig. | the relation between x and x, for one possible case

dy = —=2c,. a, = 04¢,. ¢y = 0-2¢,. a, = ¢, = 0.
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FiG. 1. Behaviors of k, A and ¢,,.

Behaviors of A = (e,; ~¢,./2e,,) and e,, are also shown in the same figure, where x,. A,
and (e,,), are values of », A and e, at x, = 0. respectively. It is seen from this that the
variation of x in the interval |x,| < 0-5is less than | per cent, while that of A is much larger.

We consider the characters of the quasi-transverse wave in two cases (a, )|x] > 1 and(a,)
constant ¢, —e, and df/dx; as special cases.

5. TWO SPECIAL CASES

Case (a,j: |kl » 1

This corresponds to the case where rotation of principal axes is very small. Then (3.14)
become

aw, 1. ,
dx; = 5iCle; )W,

5.1
dw,
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X, 2
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by neglecuing terms containing dt/ dx;. (5.1} show that quasi-transverse wave is polarized
in two slightly rotating principal axes of the stress. and the relative phase difference of these
polarized waves 0 1s given by

LR
o=C ey = ey ) dx . 5.0
U
Cuse(a,): ey —ey wnd dlidx, are constant
For brevity we put
;Ci de F RS
7Cley —ea) = = F. (5.3
L dx,

Then {3.14) has the following fundamental solution matrix whose two columns are two
linearly independent solutions:
P, 4 ‘£ P g P
cos Py + —sin Px,. =50 P,
TP ! P
154

F 73
~5 sin Px;. cos Px,— 1]7) sin Px,
where P = E*+F~,

We consider an interesting case in which one of the components in the principal axes of
the incident wave, say W, 1s zero at x, = 0. Then the solutions are

WY = Dl =K1 exp(i® .

554
W, = -DK.
where D, 1s a constant and
. B
K= pin Px,.
13,61
IE
®, = an '(wtan Px,J.
\ P
Therefore even if only one component M) 1s present at x. = (. another component 117, is

generated during propagation and these two have the refative phase difference o = O, —
(ninterger). When we detect these waves at Xy = x, by a T-cut quartz eryvstal with its axis
making an angle w with the principal axis. the observed guantity 15 the amplitude of the
displacement component w gnen by
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where w) and wy are displucement components reterred to princtpal axes:
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{3.8)are obtained from (5.5). (3.10) and (3.8). (5.7} can be rewritten as
wo= Dﬁ' cOos {wt — i

where the observed amplitude D,r is given by
(5.10)

r o= b+ 41~ 2K ) cos 2y~ K(1~ K7} cos O, sin 2.
We can determine E and F by using (3.10) and rotating the receiving quartz crystal. When

IK| « L.r ~ 31+ cos 2¥). which corresponds to the case (a, ).
and 3 show the relations between r* and x, and between ©, and x, for

By

Figures 2
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FIG. 2. O, ~x  relation: (@) E= F= {liem (D E = L. F= f(ljemi: () E = L. F=0(1.cm).

6. GENERAL PROPERTIES OF TRANSVERSE WAVES—CHARACTERISTIC
DIRECTIONS

Here we discuss the corresponding directions to those treated by H. K. Aben [9] in
photoelasticity.

Since the matrix 4 composed of coefficients in the right hand members of (3.11) or (3.14)
has the property A* = — A4, where A* is the complex conjugate transposed matrix of 4, the

fundamental solution matrix @ of (3.11) or (3.15) satisfies [12]
O(x;)P*(x;) = const. matrix.

Then the solution of (3.14) which is W, at x5 = x,, can be expressed as
W = Ulxy. x34)Wa. (6.1)
where U(x;. x;) 18 certain two by two unitary matrix given by
Ulxy. X30) = DX O™ Hxso) (6.2)
and _
i W GWL
w=1 N =
Wy T WGy

W,
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It 1s known [13] that the most general form of a unitary matrix is

i

Sikz 2y s D ﬁ S )
e TSl Cos —ismy e U0
. | - - ., )
LNy o Xgn) =" e = g6 3}
B - v 1%
- Az 2 T i o Aty 1t
) ¢ oo—ising cos g 0 ¢
and can also be rewritten as
] cosx. —sinx, tet 0 Cos ¥, simx, ,
Uix,oxgel = - , Q= {641
S %, COS X, (VR —sIn X, COS X

by using the Eulerian theorem about rotations of a rigid body and the homomorphism of
the rotatton group with the unitary transformation group with unity determinant. In 6.3
and 16412 o o0, 2, and fare all real quantities depending on the deformation between
¥y, and vy, Replacing (6,41 into (6.1 shows that if we refer the result to rotated axes through
the angle %, at 1., und through the angle », at v, we have

W, Y R .
~ R o~ 6.3
i 3 e o

where we used ~ o denote components in both rotated axes. We call directions determned
by angles x, and 2, primary and secondary characteristic direciions after Ho Ko Aben 7
From (6.5) the wave linearly polarized in one of the primary characteristic directions is aiso
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linearly polarized in the corresponding secondary characteristic direction. This property
may be called briefly nwo points polarization. In general these directions do not coincide
with principal axes of the stress and can be determined experimentally by rotating two
quartz crystals in the transmitted method.

7. CONCLUSIONS

The effects of inhomogeneity of deformations along the propagation direction especially
those of rotation of principal axes of the stress are studied. Fundamental equation (3.11) or
{3.14) and (3.16) are obtained under the assumptions (3.1} by the adequate approximation.

For a quasi-transverse wave quantities ¢, —e, and df/dx, in the coefficients of (3.11} or
{3.14) are considered at first and it i1s shown that the case |, —¢,} « |df;dx,] is impossibie.
Consideration of two possible interesting cases give the following results;

{a,} Whenle; —e,| » |d6/dx;], the wave is polarized in principal axes of the stress and
two linearly polarized waves have the relative phase difference (5.2).

(a,) When e, —¢, and df/dx, are constant, two components in the principal axes are
coupled as shown by (5.4).

In general the principal axes are not polarization directions. but it is shown from general
properties of solutions of (3.14) or (3.11) that there exist characteristic directions which
characterize two points polarization at the incident and the emergent points,

For a quasi-longitudinal wave only its phase is affected by a varying deformation as
shown (3.19}.
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AbcTpakT—Ha OCHOBE TEOPUHK YAPYTOCTH BTOPOTrO NOPKIAKA ., HCCNERYETCH PACIIPOCTPAHEHHE CBEPX3IBYKOBOM
BOJIHbI B 1¢DOPMUPOBAHHOM TBEpAOM Tene. PaccmaTpyBaemasn ae(opMaliva TAKOBA, YTO ONHA W3 INABHbIX
oceil HanPHKEHUH UMEET TAKOE Ke CaMOE HanpagjieHUe As NPOU3IBOABHON TOUKK, a2 ABE AIPYIrHe BPallatoTCs.
OcHoBHbIe aAnbbepeHUHanbHBIe YPABHEHUS BTOPOro NOpsinka, OMHCBIBAIOWIKE PACIPOCTPAHEHHE CBEPX3-
BYKOBO BO/MBI, BIOOAbL HEUIMEHAEMOIrO [1aBHOTO HanpasleHus, NpeoOpazoBLIBAIOTCA B YPABHEHMSA
NEPBOro NOPANKA, NYTEM COOTSBETCTBYIOWIEH annpoxcuMauun. 3atem, uccaenyioTes 3ddexTsl HeonHOPO-
AHOCTH AedOPMAUMM., @ CHCUMANBbHO BPALIECHME TIaBHBLIX OCeil Hanpasnexwit. Oxa3biBaercs, 410 nan
CYYas KBAIMNONMEPEUHOR BONHBI TTIABHBIC OCH HATIPDAKEHUI HE ABNKIOTCH B NANbHEHLIEM HAlPaBICHHAMHE
NOASPH3ALNK, HO B 3TOM C/1y4ae CYLUECTBYIOT HOBbLIC HANPABICHHA, HAIBAHHLIC XAPAKTEPHUCTHHECKUMHU,
KaK B TPEXMEPHOH GOTOYNPYTOCTH.



